If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9t^2-50t+25=0
a = 9; b = -50; c = +25;
Δ = b2-4ac
Δ = -502-4·9·25
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-40}{2*9}=\frac{10}{18} =5/9 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+40}{2*9}=\frac{90}{18} =5 $
| 6t+3=3t=15 | | 165=2x+5 | | 2x–1=19–3x | | z^2=1.4/10.2 | | 55=2x+5/3 | | A=2x³-4x²=x-2 | | 9t^2-1250t+625=0 | | 2x-20=2(3x+2) | | 28-5=2+3(3x) | | 5x+35=3(5x+5) | | 9/n=75/100 | | 3x-12=5(3x-4)-4 | | x+9,5=81/x | | 20n+59=10n+69 | | 25^3x/5^2=125^2 | | -2(1-x)-3(x-1)=0 | | -x-3=17 | | 18/25=90/n | | N23n=0 | | 24=4(x-5) | | 8/24=n18 | | 0,5+7x=12-2x | | 5(m+7)=75 | | 66/y=3 | | 15-8m=8 | | (X-2)(3x+5)(x²-49)=0 | | x+1=2x=2+1=2x=5 | | 22-10b=8 | | 12-5n=3 | | 12-5n=13 | | 18-4b=13 | | 55-5f=20 |